Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.554
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38568306

RESUMO

Slovak bentonite was used as an effective natural adsorbent for the removal of Cd(II) and Co(II). Characterization of the samples was conducted using X-ray diffraction (XRD), high-resolution scanning electron microscopy with an X-ray energy dispersion spectrometer (SEM-EDS), and infrared spectroscopy (FT-IR). Adsorption experiments were carried out for pure water and artificial seawater, each containing cobalt and cadmium cations within the concentration range of 5-60 mg/L. The highest bentonite adsorption capacities of the tested bentonites were 23.5 (Cd) and 32.2 (Co) mg g-1. The kinetics data revealed that, in addition to chemisorption, intraparticle diffusion contributes to metal removal. The physical and structural properties of bentonites play an important role in adsorption. Bentonite P 135 from the Lieskovec deposit showed the highest efficiency for removing both ions, with removal percentages exceeding 90% and 77.5% for pure water and artificial seawater, respectively. The results indicate the suitability of using Slovak bentonites as an alternative sorbent for both metal extractions. The mechanism of metal ion adsorption on bentonite clay can be understood through surface complexation and ion exchange. The examined bentonite deposits show potential as promising natural sorbents for the removal of cobalt and cadmium cations from polluted waters.

2.
Plant Signal Behav ; 19(1): 2331357, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38564424

RESUMO

Ornamental crops particularly cut flowers are considered sensitive to heavy metals (HMs) induced oxidative stress condition. Melatonin (MLT) is a versatile phytohormone with the ability to mitigate abiotic stresses induced oxidative stress in plants. Similarly, signaling molecules such as hydrogen sulfide (H2S) have emerged as potential options for resolving HMs related problems in plants. The mechanisms underlying the combined application of MLT and H2S are not yet explored. Therefore, we evaluated the ability of individual and combined applications of MLT (100 µM) and H2S in the form of sodium hydrosulfide (NaHS), a donor of H2S, (1.5 mM) to alleviate cadmium (Cd) stress (50 mg L-1) in stock (Matthiola incana L.) plants by measuring various morpho-physiological and biochemical characteristics. The results depicted that Cd-stress inhibited growth, photosynthesis and induced Cd-associated oxidative stress as depicted by excessive ROS accumulation. Combined application of MLT and H2S efficiently recovered all these attributes. Furthermore, Cd stress-induced oxidative stress markers including electrolyte leakage, malondialdehyde, and hydrogen peroxide are partially reversed in Cd-stressed plants by MLT and H2S application. This might be attributed to MLT or H2S induced antioxidant plant defense activities, which effectively reduce the severity of oxidative stress indicators. Overall, MLT and H2S supplementation, favorably regulated Cd tolerance in stock; yet, the combined use had a greater effect on Cd tolerance than the independent application.


Assuntos
Brassicaceae , Sulfeto de Hidrogênio , Melatonina , Sulfetos , Sulfeto de Hidrogênio/farmacologia , Cádmio/toxicidade , Melatonina/farmacologia , Estresse Oxidativo , Antioxidantes/metabolismo , Brassicaceae/metabolismo , Peróxido de Hidrogênio
3.
Heliyon ; 10(7): e28879, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596075

RESUMO

Cadmium (Cd), a ubiquitous heavy metal, exists in numerous environmental matrices and has severe adverse effects on various human organs and tissues. This research evaluates blood and urine Cd levels in the Chinese population through data mining using Monte Carlo simulation (MCS). A total of 168 scientific studies (120 on urine and 48 on blood) published between January 1980 and December 2020, reflecting a population of 109,743 individuals in China, were included in the study. The results indicate that the blood and urine Cd levels in the Chinese population exhibited a peak from 1990 to 1995 and remained stable after 1995, averaging 1.21 µg/L of blood Cd (BCd) and 0.61 µg/L of urine Cd (UCd). The spatial trend of Cd levels varied significantly. Shandong, Zhejiang, Heilongjiang, and Guangdong provinces were identified as the top provinces with high Cd levels, which were related to factors such as tobacco sales, E-waste amounts, and contaminated rice. Additionally, the study highlights that BCd concentrations are highest among preschool-aged individuals, whereas school-age and adolescent groups exhibit the lowest levels. However, no significant difference existed among the different age groups. Males showed significantly higher Cd levels than females in the general population. Moreover, exposure to smoking, drinking, and staple food preferences had an impact on Cd levels. Furthermore, this comprehensive study, using biological monitoring and data mining, provides valuable information on Cd pollution levels in the Chinese population. It presents a statistical analysis that can aid decision-makers in implementing effective measures to control potential Cd pollution and improve the health of vulnerable populations.

4.
Biol Trace Elem Res ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602649

RESUMO

Cadmium (Cd) is one of the most well-known toxic metals capable of entering the human body via the food chain, leading to serious health problems. Human gut microbes play a pivotal role in controlling Cd bioavailability and toxicity within the human gastrointestinal tract, primarily due to their capacity for Cd adsorption and metabolism. In this work, a Cd-resistant bacterial strain, Enterococcus faecalis strain ATCC19433 was isolated from human gut microbiota. Cd binding assays and comprehensive characterization analyses were performed, revealing the ability of strain ATCC19433 to remove Cd from the solution. Cd adsorption primarily occurred on the bacterial cell walls, which was ascribed to the exciting of functional groups on the bacterial surfaces, containing alkyl, amide II, and phosphate groups; meanwhile, Cd could enter cells, probably through transport channels or via diffusion. These results indicated that Cd removal by the strain was predominantly dependent on biosorption and bioaccumulation. Whole-genome sequencing analyses further suggested the probable mechanisms of biosorption and bioaccumulation, including Cd transport by transporter proteins, active efflux of Cd by cadmium efflux pumps, and mitigating oxidative stress-induced cell damage by DNA repair proteases. This study evaluated the Cd removal capability and mechanism of Enterococcus faecalis strain ATCC19433 while annotating the genetic functions related to Cd removal, which may facilitate the development of potential human gut strains for the removal of Cd.

5.
Biol Trace Elem Res ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589681

RESUMO

Cadmium (Cd) and lead (Pb) are heavy metals prevalent in the environment and feed, and they reduce production performance of domestic animals, as well as they result in residue in animal tissues. The kidney is the target tissue for Cd and Pb. And the kidney is crucial for the reabsorption of calcium (Ca), which consequently influences bone strength. However, there are relatively few studies related to the effects of Cd and Pb exposure on performance, bone strength and kidney damage in livestock. The purpose of this experiment was to explore the combined effect of Cd and Pb on growth performance and renal impairment and the possible underlying mechanism. For this, 168 1-day-old Ross 308 broilers were randomly divided into four groups of six birds each, with seven replicates in each group: control group, 50 mg Cd/kg body weight group, 200 mg Pb/kg body weight group and 50 mg Cd/kg body weight + 200 mg Pb/kg body weight group. Feed intake was recorded daily and body weight was recorded weekly. The results show that at the end of the 3rd and 6th week, one broiler from each replicate was randomly selected for sampling. Boilers co-exposed to Cd and Pb for 3 weeks and 6 weeks had significantly decreased average daily feed intake (ADFI) and average daily body weight gain (ADG) than the control group, and the ratio of feed-to-weight gain (F/G) significantly increased after 6 weeks of co-exposure to Cd and Pb. Microscopic picture and ultrastructure analyses of the kidneys showed that Cd and Pb caused kidney damage to broiler chickens, and the damage was more serious in the Cd + Pb group, which was manifested by increased renal tubular epithelial degeneration and increased interstitial stasis points. Dietary exposure to Cd and Pb impaired production performance and induced renal oxidative damage in broilers. The combined effects of Cd and Pb on the kidneys are greater than their effects alone. The PERK-ATF4 pathway mediated endoplasmic reticulum stress participates the renal oxidative damage during chronic Cd and Pb exposure.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38591965

RESUMO

Objectives This study aims to evaluate the neuroprotective effect of caffeic acid (CAF) against cadmium chloride (CdCl2) in rats via its effect on memory index as well as on altered enzymatic activity in the brain of CdCl2-induced neurotoxicity. Methods The experimental rats were divided into seven groups (n=6 rats per group) of healthy rats (group 1), CdCl2 -induced (CD) (3 mg/kg BW) rats (group 2), CD rats + Vitamin C (group 3), CD rats + CAF (10 and 20 mg/kg BW respectively) (group 4 & 5), and healthy rat + CAF (10 and 20 mg/kg BW respectively) (group 6 & 7). Thereafter, CdCl2 and CAF were administered orally to the experimental rats in group 2 to group 5 on daily basis for 14 days. Then, the Y-maze test was performed on the experimental rats to ascertain their memory index. Results CdCl2 administration significantly altered cognitive function, the activity of cholinesterase, monoamine oxidase, arginase, purinergic enzymes, nitric oxide (NOx), and antioxidant status of Cd rats (untreated) when compared with healthy rats. Thereafter, CD rats treated with vitamin C and CAF (10 and 20 mg/kg BW) respectively exhibited an improved cognitive function, and the observed altered activity of cholinesterase, monoamine oxidase, arginase, purinergic were restored when compared with untreated CD rats. Also, the level of brain NOx and antioxidant status were significantly (p<0.05) enhanced when compared with untreated CD rats. In the same vein, CAF administration offers neuro-protective effect in healthy rats vis-à-vis improved cognitive function, reduction in the activity of some enzymes linked to the progression of cognitive dysfunction, and improved antioxidant status when compared to healthy rats devoid of CAF. Conclusions This study demonstrated the neuroprotective effect of CAF against CdCl2 exposure and in healthy rats.

7.
Biol Trace Elem Res ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592566

RESUMO

Cadmium, a highly toxic heavy metal, can cause severe damage to several vital organs including the kidney, liver, and brain. Many of the natural compounds found in aromatic plants have beneficial pharmacological properties. Eugenol is one such compound reported to have anti-inflammatory and antioxidant properties. The aim of this study is to investigate whether eugenol, a natural compound found in aromatic plants known for its anti-inflammatory and antioxidant properties, can mitigate the detrimental effects of cadmium exposure on cardiac inflammation, oxidative stress, and dyslipidemia. Male albino rats were subjected to randomization into four groups, each comprising six animals, to investigate the potential of eugenol in mitigating cadmium-induced toxicity. All groups received oral gavage treatment for 21 days. Following the treatment regimen, cardiac tissue specimens were collected for analysis. The assessment of cardiac antioxidant status entailed the determination of enzymatic activities including catalase, SOD, GST, and GPx. Additionally, levels of lipid peroxidation, reduced glutathione, protein carbonyl oxidation, and thiol levels were quantified in the cardiac tissue samples. To evaluate cardiac damage, marker enzymes such as LDH and CK-MB were measured. Furthermore, the inflammatory response in the cardiac tissue induced by cadmium exposure was assessed through the quantification of NO, TNF-α, and IL-6 levels. Additionally, molecular docking and dynamics studies were conducted utilizing autodock and GLIDE methodologies. Cadmium administration markedly enhanced the activities of LDH and CK-MB, prominent cardiac markers. Furthermore, cadmium treatment also demonstrated a significant decrease in the reduced glutathione levels and antioxidant enzyme activities. Significant elevation of the inflammatory markers was also observed in the cadmium-treated group. Eugenol treatment effectively ameliorates cadmium-induced biochemical changes. This study underscores the potent anti-inflammatory and antioxidant attributes of eugenol. Co-administration of eugenol alongside cadmium exhibited remarkable protective efficacy against cadmium-induced cardio-toxicity. Eugenol demonstrated the capability to reinstate the cellular redox equilibrium of rats subjected to cadmium treatment to levels akin to those of the normal control group.

8.
Environ Pollut ; 349: 123889, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38574949

RESUMO

Cadmium (Cd) accumulation in agricultural systems has caused global environmental and health concerns. Application of phosphate fertiliser to sustain plant production unintentionally accumulated Cd in agricultural soils over time. Rapid and cost-effective Cd monitoring in these soils will help to inform Cd management practices. Compared to total Cd analysis, examining chemical fractions by sequential extraction methods can provide information on the origin, availability, and mobility of soil Cd, and to assess the potential plant Cd uptake. A total of 87 air-dried topsoil (0-15 cm) samples from pastoral farms with a history of long-term application of phosphate fertiliser were analysed using wet chemistry methods for total Cd and Cd forms in exchangeable, acid soluble, metal oxides bound, organic matter bound, and residual fractions. The data acquired using three proximal sensing techniques, visible-near-infrared (vis-NIR), mid-infrared (MIR), and portable X-ray fluorescence (pXRF) spectroscopy were used as input for partial least squares regression to develop models predicting total Cd and Cd fractions. The average total Cd concentration was 0.58 mg Cd/kg soil. For total Cd, cross-validation (cv) results of models using individual vis-NIR, MIR, and pXRF data performed with normalised root mean squared error (nRMSEcv) of 26%, 30%, and 31% and concordance correlation coefficient (CCCcv) of 0.85, 0.77, and 0.75, respectively. For exchangeable Cd, model using MIR data performed with nRMSEcv of 40% and CCCcv of 0.57. For acid soluble and organic matter bound Cd, models using vis-NIR data performed with nRMSEcv of 11% and 33% and CCCcv of 0.97 and 0.84, respectively. Reflectance spectroscopy techniques could potentially be applied as complementary tools to estimate total Cd and plant available and potentially available Cd fractions for effective implementation of Cd monitoring programmes.

9.
Sci Rep ; 14(1): 8140, 2024 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584184

RESUMO

As the data concerning element concentrations in human milk (HM) samples and their intake by infants are lacking in Poland, the present study aimed to explore this issue. The material consisted of HM samples obtained from 30 exclusively breastfeeding mothers during 4-6 weeks postpartum. Additionally, to identify the factors that may potentially affect HM composition, information regarding maternal data (anthropometry, body composition, and diet) was also collected. Maternal diet was assessed with two methods-a food frequency questionnaire and 3-day dietary records. In total, 18 essential and non-essential elements were determined. For the elements analysis, we used inductively coupled plasma quadrupole mass spectrometry. Most of the elements (n = 11, 61%) were detected in all HM samples. In all HM samples tin concentration was higher (5.67 ± 2.39 µg/L) than the usual range reported by the World Health Organization (~ 1.0 µg/L). HM cadmium content was positively associated with maternal salty snacks intake (r = 0.502, p = 0.005), arsenic with whole-grain products intake (r = 0.37, p = 0.043), and mercury concentration with fruits and seeds/nuts consumption (r = 0.424, p = 0.042 and r = 0.378, p = 0.039, respectively). Higher HM lead concentration was predicted by maternal age (95% CI [0.94-0.97]), intake of fish (95% CI [1.01-1.03]), and vegetables (95% CI [1.02-1.06]). The highest infants' intake was observed for copper (35.24 ± 12.48) and the lowest for arsenic (0.076 ± 0.102). Infants' exposure to lead was associated with maternal frequency consumption of canned fish (p = 0.0045). There is a need to perform further research on this topic to maximize the benefits of breastfeeding by minimizing maternal and infant exposure to potentially toxic elements.


Assuntos
Arsênio , Leite Humano , Lactente , Feminino , Animais , Humanos , Leite Humano/química , Arsênio/análise , Aleitamento Materno , Cádmio/análise , Chumbo/análise
10.
Ecotoxicol Environ Saf ; 275: 116275, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564858

RESUMO

Compound pollution with cadmium (Cd) and zinc (Zn) is common in nature. The effects of compounded Cd and Zn on the growth and development of Iris pseudacorus in the environment and the plant's potential to remediate heavy metals in the environment remain unclear. In this study, the effects of single and combined Cd and Zn stress on I. pseudacorus growth and the enrichment of heavy metals in I. pseudacorus seedlings were investigated. The results showed that under Cd (160 µM) and Zn (800 µM) stress, plant growth was significantly inhibited and photosynthetic performance was affected. Cd+Zn200 (160 µM + 200 µM) reduced the levels of malondialdehyde, hydrogen peroxide, and non-protein thiols by 31.29%, 53.20%, and 13.29%, respectively, in the aboveground tissues compared with levels in the single Cd treatment. However, Cd+Zn800 (160 µM + 800 µM) had no effect. Cd and Zn800 inhibited the absorption of mineral elements, while Zn200 had little effect on plants. Compared with that for Cd treatment alone, Cd + Zn200 and Cd+Zn800 reduced the Cd content in aboveground tissues by 54.15% and 49.92%, respectively, but had no significant effect on Cd in the root system. Zn significantly reduced the Cd content in subcellular components and limited the content and proportion of Cd extracted using water and ethanol. These results suggest that a low supply of Zn reduces Cd accumulation in aboveground tissues by promoting antioxidant substances and heavy metal chelating agents, thus protecting the photosynthetic systems. The addition of Zn also reduced the mobility and bioavailability of Cd to alleviate its toxicity in I. pseudacorus.


Assuntos
Iris (Planta) , Metais Pesados , Poluentes do Solo , Cádmio/toxicidade , Cádmio/análise , Zinco/toxicidade , Desenvolvimento Vegetal , Poluentes do Solo/toxicidade
11.
Sci Total Environ ; : 172633, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643877

RESUMO

This study aims to evaluate the effects of oxytetracycline (OTC) on detoxification and oxidative defense in the hepatopancreas and intestine of Chinese mitten crab (Eriocheir sinensis) under cadmium (Cd) stress. The crab was exposed to 0.6 µM Cd, 0.6 µM OTC, and 0.6 µM Cd plus 0.6 µM OTC for 42 days. Our results showed that in the intestine, OTC alone enhanced protein carboxylation (PC) and malondialdehyde (MDA) contents, which was associated with the increased OTC accumulation. Compared to Cd alone, Cd plus OTC increased Cd and OTC contents, and reduced detoxification (i.e., glutathione (GSH) content, gene expressions of cytochrome P450 (CYP) isoforms, 7-ethoxyresorufin O-deethylase (EROD) activity, mRNA levels and activities of glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST)), and antioxidant defense (i.e., gene expressions and activities of catalase (CAT) and superoxide dismutase (SOD)) in the intestine, leading to the increased in PC and MDA contents, suggesting that OTC had a synergistic effect on Cd-induced oxidative damage. In the hepatopancreas, although OTC alone increased OTC accumulation, it did not affect PC and MDA contents. Compared to Cd alone, Cd plus OTC reduced MDA content, which was closely related to the improvement of detoxification (i.e., GSH content, mRNA levels of CYP isoforms, EROD activity, gene expressions and activities of GPx, GR and GST), and antioxidant defense (gene expressions and activities of CAT and SOD, metallothionein content). Aryl hydrocarbon receptor (AhR) and nuclear factor E2-related factor 2 (Nrf2) transcriptional expressions were positively correlated with most detoxification- and antioxidant-related gene expressions, respectively, indicating that AhR and Nrf2 were involved in the regulation of these gene expressions. Our results unambiguously demonstrated that OTC had tissue-specific effects on Cd-induced toxicological effect in E. sinensis, which contributed to accurately evaluating Cd toxicity modulated by TCs in crab.

12.
Environ Toxicol ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644733

RESUMO

Cadmium (Cd) is a pervasive environmental contaminant and a significant risk factor for liver injury. The present study was undertaken to evaluate the involvement of ferroptosis and neutrophil extracellular traps (NETs) in Cd-induced liver injury in Nile tilapia (Oreochromis niloticus), and to explore its underlying mechanism. Cd-induced liver injury was associated with increased total iron, malondialdehyde (MDA), and Acyl-CoA synthetase long-chain family member 4 (ACSL4), together with reduced levels of glutathione, glutathione peroxidase-4a (Gpx4a), and solute carrier family 7 member 11 (SLC7A11), which are all hallmarks of ferroptosis. Moreover, liver hyperemia, neutrophil infiltration, increased inflammatory factors and myeloperoxidase, as well as elevated serum DNA content in Cd-stimulated Nile tilapia suggested that a considerable number of neutrophils were recruited to the liver. Furtherly, in vitro experiments demonstrated that Cd induced the formation of NETs, and the possible mechanism was related to the generation of reactive oxygen species and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, along with the P38 and extracellular regulated protein kinase (ERK) signaling pathways. We concluded that ferroptosis and NETs are the critical mechanisms contributing to Cd-induced liver injury in Nile tilapia. These findings will contribute to Cd toxicological studies in aquatic animals.

13.
Biol Trace Elem Res ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630343

RESUMO

Population-based studies on the association between cadmium (Cd) exposure and thyroid function are limited and have shown conflicting results. Two independent cross-sectional studies using different Cd biomarkers were carried out in six rural areas with different soil Cd levels in China. Thyroid dysfunction was defined based on levels of thyroid stimulating hormone (TSH) and free thyroxine (FT4). Multivariable linear regression, multiple logistic regression, and restrictive cubic splines models were used to estimate the association between Cd and thyroid dysfunction. For both of the two independent studies, higher Cd levels were observed to be associated with lower TSH levels and higher risk of thyroid dysfunction. The negative relationship between urinary Cd and TSH was found in both total participants (ß = - 0.072, p = 0.008) and males (ß = - 0.119, p = 0.020) but not in females; however, the negative relationship between blood Cd and TSH was only found in females (ß = - 0.104, p = 0.024). Higher urinary Cd was associated with higher risk of thyroid dysfunction (OR = 1.77, p = 0.031), while higher blood Cd was associated with higher risk of thyroid dysfunction (OR = 1.95, p = 0.011). Results from the two independent cross-sectional studies consistently suggested that higher Cd levels were associated with sex-specific thyroid dysfunction.

14.
Environ Technol ; : 1-11, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623611

RESUMO

Tobacco (Nicotiana tabacum L.) shows promise for remediating Cd-contaminated soil due to its significant Cd accumulation capabilities. Although various tobacco varieties exhibit distinct Cd bioaccumulation capacities, a comprehensive understanding of the underlying mechanisms is lacking. This study, conducted using hydroponics, explores differences in Cd accumulation and tolerance mechanisms between two tobacco varieties, Basma and Yunyan 87. The results showed that Cd stress reduced the dry weight, tolerance index, and root morphology for both varieties. Basma exhibited a relatively smaller decline in these indices compared to Yunyan 87. Moreover, Basma demonstrated a higher Cd bioconcentration factor (BCF), concentration, and accumulated content, signifying its superior tolerance and bioaccumulation capacity to Cd compared to Yunyan 87. The Carbonyl Cyanide3-ChloroPhenylhydrazone (CCCP) addition resulted in reduced Cd accumulation and BCFs in both tobacco species. This effect was more pronounced in Basma, suggesting that Basma relies more on an active transport process than Yunyan 87. This could potentially explain its enhanced bioaccumulation ability. Subcellular Cd distribution analysis revealed Basma's preference for distributing Cd in soluble fractions, while Yunyan 87 favoured the cell wall fractions. Transmission electron microscope showed that Basma's organelles were less damaged than Yunyan 87's under Cd stress, possibly contributing to the superior tolerance of Basma. Therefore, these results provided a theoretical foundation for development of Cd-contaminated soil tobacco remediation technology.

15.
Int J Phytoremediation ; : 1-18, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623998

RESUMO

Malachite green (MG) dye and cadmium metal ion are toxic pollutants that should be removed from aqueous environment. The recent study aimed to examine the adsorption behavior of MG dye and Cd (II) from wastewater onto low-cost adsorbent prepared by activating corn silk with nitric acid (ACS) and characterized by SEM, FTIR, XRD, BET and TGA. The optimum MG and Cd (II) adsorption was observed at pH 7 and pH 9 and maximum uptake of both pollutants was at 0.5 g dosage, 60 mins contact time and 20 mg/L initial concentration. The retention of dye and metal ion by the studied adsorbent was best fit to Langmuir isotherm and Pseudo-second order kinetics. The maximum monolayer coverage capacity of ACS for MG dye and Cd (II) ion was 18.38 mg/g and 25.53 mg/g, respectively. Thermodynamic studies predicted a spontaneous reaction with exothermic process for MG dye whereas an endothermic and spontaneous process was confirmed for Cd ion based on estimated parameters. The adsorption mechanism of MG dye and Cd (II) uptake was by combination of electrostatic interaction, pore diffusion, ion exchange, pie-pie attraction, hydrogen bonding, and complexation. The adsorbed pollutants were effectively desorbed with significant regeneration efficiency after successive five cycles that proved the potential of low-cost biosorbent for selective sequestration of cationic dye and divalent metal ion from effluents.


The use of nitric acid-modified corn silk has been reported to enhance its adsorption performance over the unmodified cob for pollutants such as cadmium ions and malachite green. Although there may be no recorded data on the adsorption efficiency of acid-treated corn silk for selected pollutants, it can be considered as a prospective bio-sorbent owing to its chemical composition and functional groups for exchange of hydrogen ions for other cations.

16.
Wei Sheng Yan Jiu ; 53(2): 202-208, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38604954

RESUMO

OBJECTIVE: To investigate the blood cadmium concentrations and the related change in Chinese urban children derived from the China Nutrition and Health Survey 2002 and 2012(CNHS 2002 and CNHS 2012). METHODS: The Chinese urban children aged 6-11 years were selected according to gender, age and regional distribution using the multi-stage stratified cluster random sampling method, as well as the corresponding whole blood samples. The blood cadmium concentration was carefully determined by the quadrupole inductively coupled plasma mass spectrometry(ICP-MS) and the percentage of blood cadmium over 2 µg/L was subsequently estimated. In addition, the upper limit values of the 95%CI of the 95th percentiles of available blood cadmium data was assessed as the threshold of cadmium exposure. RESULTS: Totally, 2182 Chinese urban children were included, and of these, 1036 children were from the CNHS 2002 and 1146 children were from the CNHS 2012. From the CNHS 2002 to the CNHS 2012, the median blood cadmium concentration was increased from 0.28 µg/L to 0.95 µg/L, and the percentage of blood cadmium with over 2 µg/L was elevated from 1.45% to 10.47%. In addition, the new estimated threshold of blood cadmium was ascended from 1.24 µg/L up to 2.89 µg/L. CONCLUSION: The risk of cadmium exposure in Chinese urban children aged 6-11 years was increasingly aggravated from the CHNS 2002 to the CNHS 2012.


Assuntos
Cádmio , Exposição Ambiental , Criança , Humanos , Cádmio/sangue , China , População do Leste Asiático
17.
Biosens Bioelectron ; 255: 116254, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569252

RESUMO

Nitrogen fixation is a key process that sustains life on Earth. Nitrogenase is the sole enzyme capable of fixing nitrogen under ambient conditions. Extensive research efforts have been dedicated to elucidating the enzyme mechanism and its artificial activation through high applied voltage, photochemistry, or strong reducing agents. Harnessing light irradiation to minimize the required external bias can lower the process's high energy investment. Herein, we present the development of photo-bioelectrochemical cells (PBECs) utilizing BiVO4/CoP or CdS/NiO photoanodes for nitrogenase activation toward N2 fixation. The constructed PBEC based on BiVO4/CoP photoanode requires minimal external bias (200 mV) and suppresses O2 generation that allows efficient activation of the nitrogenase enzyme, using glucose as an electron donor. In a second developed PBEC configuration, CdS/NiO photoanode was used, enabling bias-free activation of the nitrogenase-based cathode to produce 100 µM of ammonia at a faradaic efficiency (FE) of 12%. The ammonia production was determined by a commonly used fluorescence probe and further validated using 1H-NMR spectroscopy. The presented PBECs lay the foundation for biotic-abiotic systems to directly activate enzymes toward value-added chemicals by light-driven reactions.


Assuntos
Técnicas Biossensoriais , Nitrogenase , Nitrogenase/química , Nitrogenase/metabolismo , Amônia/química , Fixação de Nitrogênio , Nitrogênio/química
18.
Environ Monit Assess ; 196(5): 412, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565815

RESUMO

Cadmium (Cd) is a highly toxic metal that frequently contaminates our environment. In this study, the bioflocculant-producing, cadmium-resistant Escherichia fergusonii ZSF-15 was characterized from Paharang drain, Bawa Chak, Faisalabad, Pakistan. The Cd-resistant E. fergusonii was used to determine the bioflocculant production using yeast-peptone-glycerol medium (pH 6.5) supplemented with 50 mg L-1 of Cd. The culture was incubated for 3 days at 37 °C in a rotary shaker at 120 rpm. The fermentation broth was centrifuged at 4000 g for 10 min after the incubation period. The maximum flocculating activity by isolate ZSF-15 was found to be 71.4% after 48 h of incubation. According to the Fourier transform infrared spectroscopy analysis, the bioflocculant produced by strain ZSF-15 was comprised of typical polysaccharide and protein, i.e. hydroxyl, carboxyl, and amino groups. The strain ZSF-15 exhibited bioflocculant activity at range of pH (6-8) and temperature (35-50℃). Maximum flocculation activity (i.e. 71%) was observed at 47℃, whereas 63% flocculation production was observed at pH 8. In the present study, antioxidant enzyme profile of ZSF-15 was also evaluated under cadmium stress. A significant increase in antioxidant enzymes including superoxide dismutase (118%) and ascorbate peroxidase (28%) was observed, whereas contents of catalase (86%), glutathione transferase (13%), and peroxidase (8%) were decreased as compared to control.


Assuntos
Antioxidantes , Cádmio , Escherichia , Cádmio/toxicidade , Concentração de Íons de Hidrogênio , Monitoramento Ambiental , Floculação
19.
Toxicol Sci ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579196

RESUMO

Cadmium (Cd) is a ubiquitous toxic heavy metal and a potential neurotoxicant due to its wide use in industrial manufacturing processes and commercial products, including fertilizers. The general population is exposed to Cd through food and smoking due to high transfer rates of Cd from contaminated soil. Cd has been shown to mimic calcium ions (Ca2+) and interfere with intracellular Ca2+ levels and Ca2+ signaling in in vitro studies. However, nothing is known about Cd's effects on Ca2+ activity in neurons in live animals. This study aimed to determine if Cd disrupts Ca2+ transients of neurons in CA1 region of the hippocampus during an associative learning paradigm. We utilized in vivo Ca2+ imaging in awake, freely moving C57BL/6 mice to measure Ca2+ activity in CA1 excitatory neurons expressing genetically encoded Ca2+ sensor GCaMP6 during an associative learning paradigm. We found that a smaller proportion of neurons are activated in Cd-treated groups compared to control during fear conditioning, suggesting that Cd may contribute to learning and memory deficit by reducing activity of neurons. We observed these effects at Cd exposure levels that result in blood Cd levels comparable to the general US population levels. This provides a possible molecular mechanism for Cd interference of learning and memory at exposure levels relevant to US adults. To our knowledge, our study is the first to describe Cd effects on brain Ca2+ activity in vivo in freely behaving mice.

20.
Ecotoxicol Environ Saf ; 276: 116259, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581905

RESUMO

Gestational cadmium exposure increases the risk of preeclampsia. Placenta mitophagy was activated in preeclampsia. The aim of present study was to explore the mechanism of cadmium-induced mitophagy activation and its association with preeclampsia. Mitophagy markers expression levels were detected by quantitative real-time PCR, Western blot, immunofluorescence and immunochemistry in preeclampsia placenta. JEG3 cells were treated with CdCl2, iopanoic acid (IOP), 3-methyladenine and PGC1α SiRNA to verify mechanism of cadmium-induced mitophagy. Mitophagy marker LC3BII/I and P62 expression were increased and mitochondrial membrane receptor protein TOM20 and FUNDC1 expression were decreased in preeclampsia placenta as compared with that in normotension control. Mitophagy marker LC3BII/I and P62 expression were increased and TOM20 and FUNDC1 expression was decreased in CdCl2-treated JEG3 cells. Meanwhile, mitochondrial biogenesis regulator, PGC1α expression was decreased in preeclampsia and CdCl2-treated JEG3 cells. The expressions of LC3B and P62 were increased and the expressions of TOM20, FUNDC1 and PGC1α were decreased in IOP-treated cell. PGC1α SiRNA transfection led to increased expression of LC3BII/I and P62 and decreased expression of TOM20 and FUNDC1. The expression of sFlt1 was increased in preeclampsia placenta, CdCl2-treated cells, in IOP-treated cells and in PGC1α SiRNA transfected cells. 3-methyladenine treatment protected the increased expression of sFlt1 in CdCl2-treated cells, in IOP-treated cells and in PGC1α SiRNA transfected cells. Meanwhile, co-treatment of cadmium and IOP or PGC1αSiRNA led to a reduce expressions of OPA1, MFN1, MFN2 and FUNDC1 as compared to cadmium-treated, IOP-treated and PGC1α SiRNA-treated cells. These results elucidated that maternal cadmium exposure activated placenta mitophagy through downregulation of thyroid hormone receptor signal mediated decreased expression of PGC1α and was associated with the occurrence of preeclampsia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA